
RunMCv4.0 Manual

S. Chekanov

November 28, 2005

HEP division, Argonne National Laboratory, 9700 S.Cass Avenue,
Argonne, IL 60439 USA

Main reference: Comm. Phys. Commun. 173 (2005) p.115-198

1



1 Introduction

RunMC is an object-oriented framework aimed to run various FORTRAN Monte Carlo
(MC) programs for simulation of the particle production in high-energy collisions between
elementary particles. It allows to fill 1D and 2D histograms, as well as to create ntuples
(ROOT trees). The program is written in C++, and interfaced with ROOT [1, 2] and
CLHEP [3, 4] library classes. To include user-defined histograms, you need a minimum
coding. It comes already with a number of histograms, which can be used to look at dif-
ferent event characteristics for many high-energy processes. One can also write a ROOT
event tree with selected events for further analysis. This application is open-source li-
censed, and at this moment, it is available on the LINUX platforms with g++ and f77
compilers.

2 Installation under LINUX

Download the file “runmcv[version].tgz” from http://www.desy.de/~chekanov/runmc

([version] denotes the current RunMC version). Then ”gunzip” and ”untar” this file, i.e.
“gunzip runmc[version].tar.gz; tar -vxf runmcv[version].tar”. This creates the directory
RunMC[version]. To install the RunMC program from the source file, you need: g++,
g77 compilers. Also, you have to have “sed”, “zip/unzip” and “acroread” to read the user
manual. Normally, all these packages are already installed on Linux PCs.

Before further installation, you should have:

1. ROOT C++ package, http://root.cern.ch/;

2. CERNLIB library, http://wwwasd.web.cern.ch/wwwasd/cernlib/version.html ;

3. CLHEP class library http://wwwinfo.cern.ch/asd/lhc++/clhep/ ;

4. JAVA virtual machine (JRE);

Check JAVA by typing “java -version” . If JAVA is installed, you should see

java version "1.5.0_05"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_05-b05)

Java HotSpot(TM) Client VM (build 1.5.0_05-b05, mixed mode, sharing)

or a similar mesage. If not, install recent java JRE (Java Runtime Environment) from
the SUN web page http://www.java.com/en/download/manual.jsp .

The simplest way to compile C++ source of the main package is:

• cd RunMC[version]/build i.e. go to the directory containing the package’s source
code, and edit ”install.sh” file: (a) specify the location of the CERNLIB library
(default location is CERN DIR = /cern/pro/lib); (b) specify the location of the
CLHEP library, library itself and the include files;

• RUNMC environmental variable should be set to the RunMC[version] directory, such
that path gives the location to the RunMC directory. Then, add $RUNMC/bin to
the PATH variable:

2

http://www.desy.de/~chekanov/runmc
http://root.cern.ch/
http://wwwasd.web.cern.ch/wwwasd/cernlib/version.html
http://wwwinfo.cern.ch/asd/lhc++/clhep/
http://www.java.com/en/download/manual.jsp


sh family:

export RUNMC=<path>/RunMC

export PATH=$RUNMC/bin:$PATH

csh family:

setenv RUNMC <path>/RunMC

setenv PATH ${RUNMC}/bin:${PATH}

Type “echo $RUNMC” in the bash shell, to be sure that you set this variable properly.
It is also advisable to check your ROOT installation before compiling the RunMC.

Type “cd $ROOTSYS/test” and compile ROOT examples by typing “make”. If ROOT
is installed correctly, you should be able to compile all examples in the “test” directory.

To compile RunMC, go to the “$RUNMC/build” directory and type ”./install.sh” to
compile the package. This script makes some most elementary checks of your settings.
The installation takes 3-10 minutes depending on CPU. After the first compilation, next
compilations should take significantly less time, since all Monte Carlo libraries should be
installed already.

You can remove the program binaries and object files from the source code directory
by typing ”make cleanall”. To remove only object files, do ”make clean”. To remove the
Monte-Carlo-related files, type ”make cleanmc”.

Here, “$RUNMC” denotes the installation directory of the RunMC project, and will
not be mentioned again; all the directories discussed below are assumed to be located in
this directory.

Go to the “proj” directory and type ”runmc” to start RunMC GUI. As long as you
set $RUNMC, you can execute ”runmc” from any directory.

2.1 Installation problems

This could be due to incorrectly installed ROOT or CLHEP library Check ROOT as:
cd “$RUNMC/build/test; ./check root.sh” Check CLHEP as: cd “$RUNMC/build/test;
./check clhep.sh” If by running these scripts you will see errors, then reinstall these li-
braries

3 Installation under Windows

At present, RunMC can be installed under on Windows with Cygwin/X11.

• Install recent version of Cygwin (free package, see http://www.cygwin.com). Install
the base packages, and, in addition, the following packages: zip, unzip, rxvt, g++,
g77, make, X11, X11lib (X11 library for X11 development, this is necessary for
ROOT installation). Use “UNIX” file system for the CYGWIN installation;

3

http://www.cygwin.com


• Install ROOT. How to build ROOT under Cygwin is documented on the ROOT
web page.

• Download the main RunMC, runmc[version].tar.gz, and gunzip, and untar the pack-
age as described on the RunMC installation page;

• Now set up the bash environmental variables in ”.bashrc”:

# set RUNMC variables

export RUNMC=/home/sergei/work/RunMC # location of RunMC

export RUNMCwin32=‘cygpath -da \$RUNMC‘ # do not modify

export PATH=$RUNMC/bin:\$PATH

if this is done, do ”source .bashrc”;

In order to use RunMC together with ROOT, first you should start X-windows on
Cygwin Read more details how to start X-windows on Cygwin. The best prompt on
Cygwin is RXVT, so do not forget to install it.

Next, download the additional package ”runmcv[version]-win32.tar.gz” from the in-
stallation RunMC web page. This package contains compiled CLHEP and CERNLIB li-
braries. Do ”gunzip runmc[version]-win32.tar.gz; tar -vxf runmc[version]-win32.tar (note
the package may have a version number, therefore, use appropriate name for [version]).
This will create ”build-win32” directory; Move it to $RUNMC directory, ”mv build[version]-
win32 $RUNMC/” Now, go to $RUNMC/build-win32 and type ”./install.sh”. This should
compile the RunMC.

Note that if CYGWIN does not have ”libtermcap” library installed, CASCADE Monte
Carlo will not be compliled. CASCADE library assumes that this library is located here
”/usr/lib/termcap/libtermcap.a”

4 Quick start

Go to the user directory “$RUNMC/proj” and start RunMC by typing “runmc”. You
will see JAVA-based GUI (JRunMC). Start the Monte Carlo simulation by selecting. The
status panel should show MC models installed on your system. They all should have
”idle” state. Select from the top menu “RMC project” and “open RMC” . You will see
RMC modules which represent particular calculations. Using mouse double click, one can
view the information on these modules. Select “default” file and click on “Load”. Then
click on “Exit”. You will see the yellow progress bar indicating the compilation progress.
You also should see which MC model is running (red message “running” on the status
panel). At the end, another window should show what is inside of this physics project.
Then click on “run” on the main window. You should see ROOT canvas with 3 filled
histograms. Then you can save these histogram using the ROOT menu.

The same can be done with any RMC project files.

4



5 Starting JRunMC

When you execute ”runmc” (which is a link to jrunmc bash script), JRunMC.jar ex-
ecutable (located in ”main/jrunmc”) reads executables located in ”bin” directory and
check their status (”idle” or ”running”). Then JRunMC builds a database from the
physics project files (RMC) which are located in ”archive” directory of the main installa-
tion RunMC directory. Each *.rmc file is a gzipped user directory ”proj”. This directory
contains user files with physics calculations, thus files in this directory can be modified.

To read information on each *.rmc file, JRunMC reads XML file ”user-comment.xml’.
You can manually unzip *.rmc file and look what is inside. One RMC file is always
unzipped - the user directory ”proj” - which corresponds to the current user calculation.

6 JRunMC user interface in more details

At present, the following MC models are included to RunMC: PYTHIA6.3 [5], HERWIG
6.5 [6], ARIADNE 4.12 [7], LEPTO 6.5 [8], AROMA 2.2 [9], CASCADE 1.2 [10], PHO-
JET 1.05 [11], RAPGAP 3.1 [12]. When JRunMC is used, one can choose one of these
MC programs. The final state used in your calculation (or/and in the RUNMC output
trees) can be: all stable particles, ”partons”, ”charged particles”, ”all particles” (which
is equivalent to the HEPEVT record) , ”stable+all” (fill both stable particles and, in ad-
dition, complete HEPEVT record), and ”user-defined”. The option ”stable+all” allows
to reconstruct some quantity from the final state (PP or PJ vectors, see the definition of
the “heplist” class), and at the same time one can preselect events using information on
all generated particles (HP vector, which is a copy of HEPEVT event record). Obviously,
this option is the slowest. The last option is used to fill the final state in the ”proj”
directory.

Select the number of events to be processed, type of initial particles, the nucleon
structure function (PDF). You also can set kinematic cuts applied on the final state in
the transverse momentum (PT) or pseudorapidity (Eta) of particles, if particles were
selected, or on jets, if your choice was jet reconstruction. If, instead of the ”particles”
option, one selects ”hadronic jets”, all kinematic cuts will be applied on the jets, without
any kinematic constrains on the particles used to form jets. For DIS, one can set up the
event kinematics in Q2, Bjorken x, y, or W.

Then, you can select the histograms to be filled by clicking on the ”Histogram” from
the ”Ouput” panel. You should see the window “Variables”. Normally, left window is
empty - this means that the user did not specify the variables in “proj/user-name.txt”
file. Howver, one can still use some system variables by selecting the option ”system
variables” below the left pannel.

Use mouse double-click to set the variable. This will add a new histogram to the
histogram window (on the right). Then one should set the minimum and maximum range
of the histograms, as well as the number of bins. You can also select two-dimensional
(2D) histograms using the option from the right side.

You can select up to 8 one-dimensional histograms at the same time (or 4 2D his-
tograms), but in fact, the user can specify up to 500 1D histograms (or 250 2D his-
tograms), but only 8 can be viewed during the run (see below). If you click on “more
histograms”, you will get a spreadsheet “Histograms”, where you can define more than 8

5



histograms (use the “Variable” window to do this). This spreadsheet should allow you to
delete, copy, paste selected histograms.

Then, by clicking on “Options”, you can select the size Canvas size, update interval for
histograms (the larger number, the less CPU consuming run), color scheme (for 1D or 2D
histograms separately, use plain style to look scientific!), and a renice level. Note that the
log-scale option at present works only if you set a single histogram for on-line viewing (of
course, when histograms will created, one can use ROOT to set log scale). You can also
specify whether you want to fill the histograms for events, or use different normalizations.
One can normalize histograms to unity, but also one can calculate differential cross sections
(in “nb” or “pb”) after taking into account the bin size and the luminosity for this MC
run. Note that the histogram-normalization option works only for 1D histograms for a
moment.

Now you can select the output using ”Output” pannel. Three types of the output files
are possible:

• The histogram file output. It has the extension “.root”;

• The HEPEVT event record with output file, which has the extension ”.htup”; The
HEPEVT output was slightly modified, to make it simpler. Read Monte Carlo
manuals for definitions of the variables. Note: the output file can be very big!

• The RUNMC event record. The output file has the extension ”.rtup”. This is a
reduced HEPEVT output. The output contains only particles selected from the
RunMC GUI: all particles, stable particles, charged stable particles;

No any kinematic cut is applied for such output, i.e. you cannot set any cut on the
final state from RunMC GUI. To keep the output file small, only particle ID, charge (times
3), mother, daughter and Px, Py, Pz, E of particles are filled. The size of the output file
is by a factor 4 smaller than that for the complete HEPEVT record. Note that double
precision values were replaced by float values, to keep output small.

Now specify the name of your project on the main window, and save it by clicking
on ”File - save MC”. Another type of projects (which called ”RMC”, and has the same
extension) will be explained latter. The option “Save MC” saves the current status of
RunMC GUI into the file ¡project¿.mc in the directory ”proj”. Note, that even if you will
not name your project, RunMC will save the present project in the default ”analmc.mc”
file automatically.

If you do want to preselect events for your RunMC tree, you can do this using three
methods:

1. Set appropriate values in the subroutines which initialize the MC programs. All user
files are in the “proj” directory (read about this below). FORTRAN subroutines
which initialize Monte Carlo models are located in the “proj/ini” directory. For
every MC model, there is a separate subroutine, in which new parameters can be
specified. (You have to read MC manuals for this, and use FORTRAN style of
coding, of course). Then do “make” from the “proj” directory. It will rebuild all
MC binary files in the “bin” directory. If you do this, the original MC HEPEVT
record will contain the preselected events you want. The event class of RUNMC will
also contain only preselected events, since this class is derived from the HEPEVT.

6



Read about the “proj” directory in more details below. Note that this option is not
preferable, but should be used if nothing else can help. Instead, use the steering
cards (see below).

2. Another way to change MC parameters is to use the steering cards. Examples of
the steering cards are located in the “example/steer/” directory. Copy necessary
steering card to a directory were you execute JRunMC (i.e. where you type “runmc”.
The steering cards will be loaded automatically. Note than in the parameter settings,
the functions in “proj/ini” directory are always the last one, i.e. parameters in
steering cards can be overwritten by the settings in the “proj/ini” functions. The
MC settings is the most complicated part, please carefully check the output log file.

3. One can preselect specific events, while generating fully inclusive events. Again,
go to the “proj” directory, and put your user calculations in “user-select.cpp”. By
default, the function returns “0”, i. e. it takes the event. If this function will
return any other number, the event will not be taken. Note that this only affects
the RUNMC tree (i.e. file “project name.rtup”). The event selection done in the
“user-select.cpp” file does not change events in the original HEPEVT record, as
well as in the simplified HEPEVT tree (i.e. the file “project name.htup”), which
is simply a copy of the FORTRAN HEPEVT common block. In addition, such
selection has no affect on the event class used to make histograms on-line. The event
class “main/inc/heplist.h” is described below. After a modification in “proj/user-
select.cpp”, type “make” to recompile the project. Read about the “proj” directory
below.

Now select predefined histograms, and set minimum and maximum values and the
number of bins. To start the run, click “run’. This will check all your setting, as well as
will display the output file options. After 1-5 seconds, you will see the ROOT canvas with
histograms updated in real time. Note that for some models, like AROMA or CASCADE,
this takes more time since these programs do some initial integrations before they start
looping over events. You will see a blue progress bar indicating how many events were
processed.

To verify log file generated by RunMC, go to the ”Control” panel and click on ”view
log”. This executes “JRunMC Notepad” - an editor with the log file (”.runmc.log”). The
log file can also be found in your current directory, look at “project name.log” file.

In addition to the log file, there a file with possible errors “project name.err”. If it is
not empty, you will be notified by JRunMC.

You can stop the run at any time by clicking on “Stop”. (You have to wait for 3-10
sec after this, since the program needs to finish all calculations. This however depends on
type of calculations.). When run is finished, you will see a pop-up window with the run
information.

After the run finished, you should see a new button “View output” (below “More
histograms” button), which has light color. Click on this button: you should see ROOT
Browser with the opened file ¡project¿.root.

Then, using the ROOT built-in graphics editor, you can modify the canvas, i.e. change
scale, put/remove labels etc. To exit, you should click on “Exit”. It is advisable to
quite the ROOT canvas fist, before you exit RUNMC. All files can be saved as a ROOT

7



file, “project name.root”. If you do not want to look at the histograms latter using
“project name.root file”, go to “Select output” to change this setting.

If something goes wrong, click on “Cancel”. It kills all the runing programs associated
with the RunMC program. Note: if you are running some RunMC executables in the
background, they will also be killed without saving the results!).

7 Saving and loading the RunMC project file

You can save all you current JRunMC settings to a project file (by default, it has has the
name “default.mc”). The extension “mc” is important. Go to the menu “File” and save
this file as “MC” file.

You can restore this project using the same “File” menu (“Read MC” item);
There is also a fast way to load project without using the “File” menu. In the shell

prompt, type “runmc project.mc”, where “project.mc” is the name of your input file.

8 The RMC physics projects

You cannot do complicated studies just by using JRunMC. First of all, only a small
number of histograms are available from JRunMC. Monte Carlo settings also cannot be
changed flexibly enough. Note that if you will copy steering cards to the directory where
you execute “runmc”, you can change some Monte Carlo parameters by modifying the
steering cards. Examples of the steering cards are located in “example/steer” directory.

As was mentioned above, the user can include personal histograms and modifications to
the MC settings by changing subroutines in the “proj” directory. This directory contains:

1. At least one “project.mc” file which defines the status of RunMC. This file can be
loaded to RunMC GUI via “File-read MC”, or using the command line: “runmc
project.mc”

2. One file “user-comment.xml”. It has comments on the structure of this projects,
and is shown automatically when an RMC project is loaded. It has some useful
information on how to run this project (in XML format). This file can be edited
the menu ”RMC project - RMC info editor”. You can view HTML formated in-
formation using ”RMC project - RMC info”. In fact, the user can edit the file
“user-comment.xml” using any text editor.

3. Directory “ini” with “dummy” subroutines for each MC model. Here you can set
MC parameters using FORTRAN codings (read MC manuals how to do this. All
MC manuals are located in “main/mcarlo” directory).

4. , “user-init.cpp”, “user-end.cpp”, “user-run.cpp” - project initialisation, analysis
and terminations subroutines. The RMC file “par-had-jetLHC.mc” illustrates how
to use these files.

5. “user-select.cpp” - here you can set any cuts you want on hadronic final state or
original HEPEVT record (if option “stable+all” used).

8



6. “user afill.cpp” defines user variables for each event, each particle (1-particle den-
sity), or each 2-particle combinations (2-particle density). The same file is used to
fill histograms for jets. Read comments in this file. One may also look at a very
similar system file “main/src/afill.cpp”.

7. This directory can contain steering cards for MC models. Settings in these cards
can be overwritten by subroutines in “ini” directory.

8. “Makefile” and “Makefile in”. You need this to compile your project by typing
“make”. The same make files are used when you load RMC project using “RMC
project - open RMC”;

9. “user-name.txt” file which attributes names to your personal histograms which will
be automatically included to RunMC during compilation. All names here should
be exactly as in the “user afill.cpp” file.

The structure of the “user-name.txt” is:

# this is just a comment

#

variable1 describe it here

variable2 describe it here

....

Use ”#” to add a comment. Do not use spaces in the definition of the variable names!.

All the subroutines defined above can be modified, and all executable for MC models
can be recompiled by typing “make” from the “proj” directory.

In fact, the directory “proj” is “unpacked” form of the so called “RMC” file (or
project), which contains everything you need to do the analysis. At this moment, this
directory has only dummy functions. Go to this directory “proj”, type “runmc” and save
this directory from “RMC project - save RMC”. You will see the message “archive/¡project¿.rmc
created” (of course, ¡project¿.rmc’ could be any name which you type in JRunMC).

The file ¡project¿.rmc is nothing but the “proj” directory, archived and compressed
using the “zip” utility. This file is stored in the “archive” directory.

In the directory “archive” you can find a number of files with the extension “rmc”.
These files contain various physics projects (MC settings+histogram definitions as in the
“proj” directory), saved exactly as you did before. This is a list of the present projects:
Every time when you start JRunMC, the program read XML file inside such file and build
a database.

1. “default.rmc” - just “proj” directory with dummy functions; “default1.rmc”, “de-
fault2.rmc” - are few examples of how to fill ROOT histograms.

2. “dis kinematics.rmc” - project for DIS related studies;

3. “dis strange.rmc” - project to study strange particles in DIS;

4. “event shapes.rmc” - project to study the event shapes;

9



5. “charm dis.rmc” - project to study D* cross sections in DIS;

6. “jets HERA.rmc” - project to study jets at HERA (using the longitudinally invariant
algorithm in the Breit frame);

7. “jets LHC.rmc” - project to study jets at LHC; It also illustrates how one can
preselect events in the user function “user-select.cpp”.

8. “jets+charm LHC.mc” - project to study jets at LHC. It also requires at least one
charm particle in an event. This example illustrates how one can preselect events
in “user-select.cpp” function. Note: option “stable+all” are used for the final state
(fills both PP and HP vectors from heplist class).

9. “par-had-jetLHC.rmc”- project to study jets at LHC. This calculates jets at parton
and hadron levels, and takes the ratio (the so-called hadronisation correction). This
example is very important: it illustrates how to set user-defined calculations via
“user-run.cpp” file, without using the internal RunMC functions. Also, the user
can set some histogram options “user-init.cpp”.

10. “view3d.rmc”- project to study top production at NLC. It creates a 3D view of the
event, following to a very similar approach of the example tree2.C file in $ROOT-
SYS/tutorials. In this example, RUNMC canvas is modified by the user. The
settings for MC are done in “ini” directory

Try to load one of this projects to “proj” directory for testing. Click “RMC project -
open RMC”. Select one of the files with the extension. Use doble click to read about the
selected project. To load the RMC project, click on ”Load”. You can get recent RMC
files from http://www.desy.de/~chekanov/runmc .

When you click on ”Load”, this automatically recreates “proj” directory by copying
new files from the selected RMC file. You will see a yellow message “Wait” and yellow
status bar indicating the compilation progress: it starts compilations of all MC models
using new files from “proj”.

Note that if you had important files in “proj”, and you have forgotten to save them
before loading a new RMC project, such files will not be lost. Check the “main/tmp” direc-
tory. It should contain old “proj” directory (in zip format) with the name “proj date.tmp”.
Note that files which are one week old are removed automatically.

When the compilation process finished, you can see that there are new histogram in
RunMC. A new message will appear which contains information on this project (from the
“proj/user-comment.xml” file). Say “OK” to close this window. Then, press histogram
bottom, and study the list of the histograms. Now you can do necessary modification via
RunMC and can start the run. (Note: if histograms in JRunMC were not updated, try
to restart “runmc”).

You can read comments on the current project using the the menu “RMC Projects-
RMC info”. This information be modified by using “RMC Projects-RMC info editor”

The new “proj” file should contain at least one file with the extension “mc” which
defines the status of RunMC GUI (which can be loaded as “runmc project.mc” or using
“File-read MC” option.

To debug files in “proj” directory, just type “make” from the shell prompt.

10

http://www.desy.de/~chekanov/runmc


You can study the RMC project which is currently in “proj” using “RMC project-RMC
browser”. This executes appropriately modified Jedit editor.

The user can define and fill external variables in “user-run.cpp”. Load the “par-
had-jetLHC.rmc” project to see how this was done. In this example, several histogram
files are defined in the user initialization subroutine, and final states are defined in the
“user-run.cpp” file. In this subroutine, jets are reconstructed using an external function
“ktjet.cpp”, and histograms are filled separately for hadrons and partons. The final state
in RunMC GUI was set to “user-defined” final state, since the final state is filled by a
user.

9 Analyzing ROOT output ntuples and files off-line

RunMC allows to analyse the ntuple files (with the extension “rtup” and “htup”) off-line.
Just select “Ntuple HEPEVT” or “Ntuple RUNMC”, and load the selected files. Always
select only one file. Then, if you want to chain over all ntuples, select this option on
RunMC GUI. Do not forget to click “check ntuple files”. This will show you the list of
the files currently selected. All calculations for those files should be done exactly as for
real Monte Carlo calculations. (Note that RUNMC ntuple format cannot be used for
many calculations since this type of ntuples does not have much information on the event
structure).

Once you have the output files, “project.root”, “project.rtup”, or “project.htup”, you
can analyze the output using ROOT TBrowser. The output files can be analyzed latter,
calculating complicated event characteristics off-line. Look at the “projexampleproj hepevt”
directory. It contains a demo program which reads “project.htup”, and prints all values
for each event on the screen. Analogously, “proj/example/proj runmc” contains a demo
program which reads “project.rtup” file. Please read “README” in these directories for
more details.

10 RunMC event structure

To include an user-defined histogram or additional calculation, you need to know the
event structure. The event structure is defined in the “main/inc/heplist.h” include file.

// Class characterizing a particle

public:

HepLorentzVector p; // 4-momenta

HepLorentzVector v; // vertex

double mass; // mass

int pos; // position in HEPEVT

int id; // identity (particle data group)

int charge3; // charge times 3

int status; // status of entry

int mother; // mother

int mother2; // point to second mother

int daughter; // daughter

11



int daughter2; // point to second daughter

};

// Class characterizing a jet (under construction)

class jet{

public:

HepLorentzVector p; // 4-momenta

int in; // number of particles in this jet

};

// Event record for Monte Carlo events

class heplist {

public:

heplist(); // constructor

~heplist(); // destructor

HepLorentzVector beam1; // beam 1

int id1; // PID of this particle

HepLorentzVector beam2; // beam 2

int id2; // ID of this particle

HepLorentzVector boson; // Px,Py,Pz,E of exchange boson

int idboson; // ID of boson

HepLorentzVector lepton; // Px,Py,Pz,E of outgoing lepton(DIS)

int idlepton; // ID of lepton

// Information on separate particles

vector<particle> PP; // vector with particles

// Information on separate particles (options stable+all)

// contains complete HEPEVT record

vector<particle> HP; // vector with particles

// information on event

double PTtot , PZtot,Etot; // event PT,PZ,Etot

// information on jets

vector<jet> PJ; // vector with jets

void fill_HEPEVT(); // fill all particles from HEPEVT (stable+all option)

void fill_All(); // fill all particles from HEPEVT

void fill_ALLstable(); // fill stable particles from HEPEVT

void fill_Partons(); // fill partons from HEPEVT

void fill_CHARGEDstable(); // fill partons from HEPEVT

int set_jetPtEta(); // set Pt and Eta cuts on particles

int set_particlePtEta(); // set Pt and Eta cuts on jets

// transformations for jets

int set_jetLABtoHCMframe(); // move jets to the HCM frame

12



int set_jetHCMtoLABframe(); // move jets to the lab from HCM frame

int set_jetLABtoBREITframe(); // move jets to Breit frame

int set_jetBREITtoLABframe(); // move jets to lab frame from Breit frame

// for sepate particles transformation

int set_particleLABtoHCMframe(); // move jets to the HCM frame

int set_particleHCMtoLABframe(); // move jets to the lab from HCM frame

int set_particleLABtoBREITframe(); // move jets to Breit frame

int set_particleBREITtoLABframe(); // move jets to lab frame from Breit frame

int set_JADEjets(); // move to the JADE jets

int set_DURHAMjets(); // move to the Durham jets

int set_KTjets(); // move to the KT long invariant jets

};

11 Structure of HEPEVT and RUNMC outputs

If you decide to write the entire event on the hard disk, you can choose between the
HEPEVT record or reduced RUNMC record. Let’s remind that the HEPEVT record
can only be changed by the FORTRAN initialization subroutine “proj/ini” (for each MC
separately). But you can do complicated selections of events for a reduced RUNMC
record (in “proj/user-select.cpp” file, see above the description, and read the “proj/user-
select.cpp” file).

Use the RunMC GUI option “Select output”. The HEPEVT output file has ”thepevt”
tree. It has the following structure:

int NEVHEP; // read HEPEVT output

int NHEP; // NHEP - total number of particles

int ISTHEP[hepevt_local_max]; // ISTHEP(j)

int IDHEP[hepevt_local_max]; // IDHEP(j)

int CHA3[hepevt_local_max]; // charge times 3

int JMOHEP1[hepevt_local_max]; // JMOHEP(1,j) in fortran

int JMOHEP2[hepevt_local_max]; // JMOHEP(2,j) in fortran

int JDAHEP1[hepevt_local_max]; // JDAHEP(1,j) in fortran

int JDAHEP2[hepevt_local_max]; // JDAHEP(2,j) in fortran

double PHEP_X[hepevt_local_max]; // PHEP(1,j)

double PHEP_Y[hepevt_local_max]; // PHEP(2,j)

double PHEP_Z[hepevt_local_max]; // PHEP(3,j)

double PHEP_E[hepevt_local_max]; // PHEP(4,j) energy

double PHEP_M[hepevt_local_max]; // PHEP(5,j) mass

double VHEP_X[hepevt_local_max]; // VHEP(1,j)

double VHEP_Y[hepevt_local_max]; // VHEP(2,j)

double VHEP_Z[hepevt_local_max]; // VHEP(3,j)

double VHEP_T[hepevt_local_max]; // VHEP(4,j)

The RUNMC output contains only particles which you select via the RunMC GUI
(all stable, all charged partons etc.). The RUNMC tree is called “trunmc”. It has the
foolowing structure:

13



const int hepevt_runmc_max =4000;

int NHEP; // total number of particles

int IDHEP[hepevt_runmc_max]; // particle ID

int ISTCHA[hepevt_runmc_max]; // 100*ISTHEP+(10 + charge times 3)

int JMOHEP[hepevt_runmc_max]; // JMOHEP(1,j) in fortran

int JDAHEP[hepevt_runmc_max]; // JDAHEP(1,j) in fortran

float PX[hepevt_runmc_max]; // PHEP(1,j)

float PY[hepevt_runmc_max]; // PHEP(2,j)

float PZ[hepevt_runmc_max]; // PHEP(3,j)

float E[hepevt_runmc_max]; // PHEP(4,j) energy

See the example “mrun.cxx” in the “example/proj runmc” directory which can read
“project.rtup” file. Note it uses “float” instead of “double” precision numbers to save the
disk space (and there is no reason to think that you really need double precision momenta
of final-state particles even for LHC energies).

12 How to include user-defined histograms

The easiest, just load any “RMC” project from “archive” directory using “RMC project
- open RMC”. You will see changes in “proj” directory, and can study functions copied
from RMC. Below are some additional details:

You can include additional histograms in a few steps: Go to the user project directory,
“proj”, and edit “user-name.txt” file. You have to put the line:

Variable description of this variable

The variable names should be defined as following:

• Should not have spaces in it;

• Any calculation which does not involve looping over all particles/jets should not
have the symbol “@” at the beginning;

• If you calculate a single-particle density (looping over all particles in an event), your
variable name should have “@” at the beginning. Note that “@” will be removed
automatically for histogram titles etc.

• If you calculate two-particle density, i.e. calculate a variable for each particle pair,
your variable name should have “@@” at the beginning.

Once you defined the title of your calculation, put the description of the calculation
after a space. You can put up to 500 histogram definitions. Each definition should be on
a new line.

There are a few types of histograms:

1. A histogram for a value characterizing the entire event. You have to define the
variable “*getval” (the star in front is important!) to do this in the function
“user afill.cpp”. It is very important that the name in “if” statement of this func-
tion should match the histogram name in “user-name.txt”. You can include as many
calculations as you like, but they all should be included using “if-else” statements.

14



2. A histogram representing a variable for each particle. Do this exactly as before,
only specify particle counting number in your variable in “user afill.cpp” function.
See examples in the RMC files. The title of a calculation should contain “@” as
explained above.

3. A histogram for each particle pair. Do this exactly as before, but specify additional 2
arguments in this variable representing particle number in “user afill.cpp” function.
The name of the calculation should contain “@@” as explained above.

4. A histogram for each jet. In this case use additional variable “jet” string in “if”
statement of the function “user afill.cpp”.

When you did this, you have to recompile the project, type “make clean” and then
“make”.

You can find a number of examples in “main/src/afill.cpp”. You should not modify
this file. Better, load one of the physics projects from “archive” as described before.

Note that the name convention described above is not needed when a user fills the
histograms in “user-run.cpp” file. See “par-had-jetLHC.rmc” project. In this example,
the final state and well as histograms are filled without using RunMC directly. In addition,
user can initialize the calculations in “user-init.cpp”

If you now save the project as “File - save MC”, you will see that your histograms are
added to the end of the file “project.mc”.

In total, 500 histograms can be included to your project. Instead of using the spread-
sheet “Histograms”, one can use any your favourite editor and correct the file “project.mc”.
Go to the end of this file. For each new histogram, you need to add 2 lines:

H-NAME “Name of the histogram” “comment or definition” H-INFO “Dimension”
Xmin Xmax “No of bins” “weight”

where “Dimension” means “1” or “2”, i.e. 1D or 2D histogram, Xmin and Xmax are
the minimum and maximum values for histogram, and “No of bins” is the number of bins
(should be always integer). Xmin and Xmax, weight are real numbers. Note: do not use
more than 20 characters to for the title of your histogram.

If you want to use “2D” histograms, set “2” after “H-INFO”. The number of histogram
with this option should be always even, otherwise RunMC will fail to calculate how many
2D histograms you want and will report an error.

You can also change any option in “project.mc” by hand. To learn about this, use
RunMC GUI and study what it does when you create the “project.mc” file.

13 User-defined settings for MC models

At this moment, all Monte Carlo models are initialised (via the RunMC GUI) for fully
inclusive events (AROMA- for charm events). You can change this if you will include
your Monte Carlo settings into the files located in “proj/ini”. You have to use FORTRAN
coding for this. Please refer to Monte Carlo manuals on how to specify your new Monte
Carlo settings (they are in “main/mcarlo/” directories. The names of the subroutines
in “proj/ini” are self-explanatory. The subroutine “set-lepto-ariadne.f” corresponds to
LEPTO with ARIADNE (for ep DIS only!). When you did this,go to the “proj” directory

15



and recompile it by typing “make”. Note: PYTHIA does not work well for DIS, use it
for photoproduction.

Another way to change MC parameters is to use steering cards (i.e initialisation files).
Examples of the steering cards are located in “example/steer/” directory. Copy necessary
steering card to a directory were you run RunMC GUI (i.e. where you execute “runmc”).
The steering cards will be included automatically. Note that in the parameters settings,
the functions in “proj/ini” directory are always the last one, i.e. parameters in steering
cards can be overwritten by the settings in “proj/ini functions.

The steering cards can be loaded and edited using RunMC steering card editor. Use
“Settings- Steering card”. You should see a spreadsheet-type of editor for the steering-
cards, where you can type new parameters for MC models. Note: you loaded RMC file,
which may contain some steering cards, it is important to start RunMC from the “proj”
directory, otherwise the RunMC steering-card editor will never find the current RMC
steering card.

Note that the steering card for HERWIG is still rather simple, i.e. only a few
parameters were implemented so far. Look at the “main/mcarlo/herwig-65/RUNMC-
herwig.steer.f” to check which parameters can be included. Therefore, the best way to
change the HERWIG parameters is to use more flexible function in “proj/ini”.

14 How to include user-defined RMC projects

There are three functions in the “proj” directory: “user-init.cpp” (initialisation), “user-
run.cpp” (for event calculation), “user-end.cpp” (for job termination). You can access the
HEPLIST class for every events and do any calculation you want to, including filling of a
ntuple. If you have an external function you want to link to the project, you should add
an additional line in the file “Makefile in” with the name of new file. Then you have to
recompile the project from the “proj” directory.

You can also include user-defined labraries, use variable ”$(PROJ LIBS)” in Make-
file in to do this. Look at the example “hztool.rmc”.

The example “par-had-jetLHC.rmc” illustrates how to fill user-defined histograms. It
does not used the final state option from RunMC GUI (it is set to “user-defined”). Instead,
the final states (partons and hadrons) are filled inside “user-run.cpp”. Histograms are also
filled inside this function. Drawing options and some protection conditions are redefined
in the “user-init.cpp” function.

You can save and restore the “proj” directory using “RMC project - save RMC”. This
will create a file with the extention “rmc” in the “archive” directory. You can restore this
file latter using “RMC project - read RMC”.

It is very easy to make a personal RMC project. First, load the default RMC project
file using “RMC project - open RMC” and select “default.rmc”. Then start ”RMC
browser”. Now you can modify any file in the ”proj” directory. Alternatively, just go
to “proj” and edit the RMC source using any editor.

15 How to access some MC parameters

During MC running, sometimes you need to access MC parameters and plot them. To do
this, you should copy them in the array REAL rUSER(50) (from “getevkin.inc”). This

16



should be done in the main loop of the FORTRAN program.
For example, for PYTHIA6, copy necessary variables to the rUSER array in “main/mcarlo/pythia-

62/RUNMC-pythia6.f” after the line “nev=nev+1”. Then you can access this variable
in any of your function (like “user afill.cpp” under “proj”) if you specify the include file
“ #include<getevkin.h>” and put the line “extern getevkincommon getevkin ;”, You
variable should be seen as “getevkin .rUSER[0]”, “getevkin .rUSER[1]” etc. Look at the
example in “dis kinematics.rmc” where the kinematic variables Q2 etc were taken directly
from the LEPTO model.

Similarly, you can do the same with any MC model.

16 How to use RunMC without GUI

You can run any MC model without the GUI. You need GUI only to create “name.mc” file
and to be able to communicate with the MC. But this can be done without the graphical
interface as well.

Before doing this, it is advisable first to run JRunMC and create a project file. Go to
“Options” and select “Do not update” and “Do not show plots”. Then you can save this
project (the default name is “analmc.mc”).

Next step is to run this MC model. Look at “bin”. This directory has binary files
for each MC model. These files read the input file “.runmc.in” located in your current
directory. This is just a link to your input project file, say “project.mc”. One can edit
this file, to set additional settings you want. Then, execute the MC binary file in shell.
For example, to run ARIADNE, just type: “runmc.ariadne ¿ runmc.log”

It is likely that you will get the message in the log file:
PROCESS PID=2331 renice 10 2331
2331: old priority 0, new priority 10 output file: analmc
$RUNMC/pipes/pipe <date>.stop has 1
where “date” is a string containing the time when your job was started. This means

that the communication file “pipe <date>.stop” forbids this run since it has “1”. To
start the run, you should replace “1” in “pipe <date>.stop” by “0”. If you set “0” in
this file, you can run this MC. If you will want to stop the MC run, again set “1” to
“pipes/pipe date.stop”. After 3-5 seconds, the run should be terminated and all his-
tograms will be saved. Since all pipe files are not identical, you can run as many jobs as
you like at the same time.

If you get the message that “pipe date.stop” is not find, you should create this file in
the “pipes” directory and make sure that the name of this file was set correctly in the
“project.mc” file (it should not contain any extension like “.stop”!).

The easiest way to learn this – use first RunMC GUI and analyse changes in the
project file “project.mc” file.

In addition to the “pipe <date>.stop” file, each run has another file called “pipe <date>.events”,
which contains the number of generated events.

The RUNMC will clean the “pipes” directory from the old files. At present, it will
clean pipe files which more than 20 days old.

17



17 How to load RMC projects without GUI

First, remove your current “proj” directory. Copy a RMC file to the top $RUNMC
directory, for example ”cp $RUNMC/archive/default.rmp $RUNMC/”. Then unzip it,
“unzip default.rmp”. This will create new “proj” directory with new files. Then recompile
the project by executing “make” from the “proj” directory.

18 Random seeds for MC models

Every time when you start new MC run, seeds for random numbers used by the MC
models are different. Seeds are calculated from many numbers which include the current
time, job id etc. Just check few first lines in “project.log” file to see that the numbers are
indeed different every time you star the run.

19 Specific issues how to run MC

19.1 PYTHIA, HERWIG, LEPTO, AROMA models

For these models, just include your settings to $RUNMC/proj/ini” and recompile the
project from “proj”. In addition to this, you can use steering cards in your current
directory. Examples of the steering cards are in “example/steer/(MC model)” for each
MC model. Note: settings defined in “proj/ini” are set at the very end, i. e. your
parameters defined in the steering cards can be overwritten via files in “proj/ini”.

19.2 CASCADE model

For this model, you need a steering card and a file with unintegrated gluon densities.
Unintegrated densities can be found in http://www-h1.desy.de/~jung/cascade . You
should copy one of it to your current directory and rename it to “ccfm.dat”. One file with
example unintegrated PDF is in the “main/mcarlo/cascade-12/steer” directory.

RunMC contains example steering cards for several processes in “main/mcarlo/cascade-
12/steer”. You should copy one steering card to your current directory and rename it to
“cascade.cards”. The file “cascade.cards” should be in the same directory where you
execute “runmc”.

19.3 PHOJET model

This model is not supported by the author, therefore, the PHOJET model was imple-
mented as it is, with a minimal coding necessary for RunMC. The cards files for initial-
isations, located in “example/steer/PHOJET”, are not standard and are different from
other Monte Carlo models. Because of this reason, it is impossible to edit these steering
cards using RunMC GUI. This model also requires input PDF file, “fitpar.dat” (located
in “main/mcarlo/phojet/files”).

In addition, there is a rather different concept to fill histograms. In case when PHOJET
steering cards are used, RunMC first fills a temporary binary file “runmc.tmp” with
events, and only then it start to read it and fill histograms. Thus, one may notice some

18

http://www-h1.desy.de/~jung/cascade


delay at the very beginning of the run, but this compensated by a very fast histogram
filling. Make sure that you have enough disk space (50k events usually require 60M for
HERA experiment).

20 How to share RunMC physics projects

All user-defined settings and calculations (including those necessary to update RunMC
GUI) are in the “proj” directory. You should create RMC file of from this directory using
RunMC GUI “RMC project - save RMC”. Then you can send just created RMC file
located in the “archive” directory.

21 Possible problems

21.1 ROOT canvas corrupted:

ROOT canvas with updated histograms is corrupted when overlapped with another win-
dow. Answer: you have to activate “BackingStore” in X11: (see PAW howto) LINUX: It
depends which daemon is in charge of putting up the login box on the X-Windows screen,
and start the X-Window session at login time. It can be xdm, kdm (provided with the
KDE environment) or gdm. If it is xdm or kdm the line starting the X server in the file
/usr/lib/X11/xdm/Xservers should not contain the option “-bs” it should look something
like:

:0 local /usr/X11R6/bin/X +bs

For XFree86 4.0.1, the Screen section of the file /etc/X11/XF86Config (or /etc/X11/XF86Config-
4) should be something like:

Section "Screen"

.

.

Option "backingstore"

.

.

EndSection

19



22 Tabular Summary

Program name: RunMC
Version: 4.0
Date of last version: September, 2005
Author: Sergei Chekanov
Size: 11M (Linux/Windows-Cygwin), 12M addition (Windows-Cygwin)
Operating system: Linux, Windows/Cygwin
Additional packages needed: CLHEP, ROOT, CERNLIB with PDFLIB (only for Linux)
Program requirements: g77, g++, make, zip/unzip, sed, X11
Programming language: C++, C, Fortran, bash
Availability: http://www.desy.de/~chekanov/runmc

References

[1] R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.
Instrum. Meth. A389 (1997) 81.
URL http://root.cern.ch/

[2] R. Brun, F. Rademakers, P. Canal, M. Goto, Root status and future developments,
ECONF C0303241 (2003) MOJT001.

[3] L. Lönnblad, CLHEP: A project for designing a c++ class library for high-energy
physics, Comput. Phys. Commun. 84 (1994) 307.

[4] M. Fischler, A. Pfeiffer, CLHEP - new developments and directionsThe proceed-
ings of International Conference on Computing in High Energy Physics and Nuclear
Physics (CHEP 2000), Padova, Italy, 7-11 Feb 2000.
URL http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/

[5] T. Sjöstrand, L. Lönnblad, S. Mrenna, Pythia 6.2: Physics and manual.

[6] G. Corcella, et al., HERWIG 6.5 release note.

[7] L. Lönnblad, ARIADNE version 4: A program for simulation of qcd cascades im-
plementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15.

[8] G. Ingelman, A. Edin, J. Rathsman, LEPTO 6.5 - a monte carlo generator for deep
inelastic lepton-nucleon scattering, Comput. Phys. Commun. 101 (1997) 108.

[9] G. Ingelman, J. Rathsman, G. Schuler, AROMA 2.2 - a monte carlo generator for
heavy flavour events in ep collisions, Comput. Phys. Commun. 101 (1997) 135.

[10] H. Jung, The ccfm monte carlo generator cascade, Comput. Phys. Commun. 143
(2002) 100.

[11] R. Engel, PHOJET: manual, Univ. Siegel preprint 95-05.
URL http://www-ik.fzk.de/~engel/phojet.html

[12] H. Jung, Hard diffractive scattering in high energy ep collisions and the monte carlo
generator rapgap, Comm. Phys. Commun. 86 (1995) 147.

20

http://www.desy.de/~chekanov/runmc
http://root.cern.ch/
http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/
http://www-ik.fzk.de/~engel/phojet.html


Index

ARIADNE, 5
AROMA, 5

CASCADE, 5
CLHEP, 2

directory archive, 5
directory proj/ini, 6

file user-name.txt, 9
file project.mc, 8
file user-comment.xml, 8
file user-end.cpp, 8
file user-init.cpp, 8
file user-name.txt, 5
file user-run.cpp, 8
file user-select.cpp, 8
file user afill.cpp, 9

HERWIG, 5

installation problems, 3

JRunMC, 4

LEPTO, 5

PHOJET, 5

RAPGAP, 5
RMC, 5, 8
ROOT, 2
RUNMC environmental variable, 2

steering cards, 7

21


	1 Introduction
	2 Installation under LINUX
	2.1  Installation problems

	3 Installation under Windows
	4  Quick start 
	5  Starting JRunMC 
	6 JRunMC user interface in more details
	7 Saving and loading the RunMC project file
	8 The  RMC physics projects
	9 Analyzing ROOT output ntuples and files off-line
	10 RunMC event structure
	11 Structure of HEPEVT and RUNMC outputs
	12 How to include user-defined histograms
	13 User-defined settings for MC models
	14 How to include user-defined RMC projects
	15 How to access some MC parameters
	16 How to use RunMC without GUI
	17 How to load RMC projects without GUI
	18 Random seeds for MC models
	19 Specific issues how to run MC
	19.1 PYTHIA, HERWIG, LEPTO, AROMA models
	19.2 CASCADE model
	19.3 PHOJET model

	20 How to share RunMC physics projects
	21 Possible problems
	21.1 ROOT canvas corrupted:

	22 Tabular Summary 

